Element Strategy Initiative International Advisory Council (ESIAC) 2019

Elements Strategy Initiative for Structural Materials ESISM

Director & Group Leader : Isao TANAKA (Kyoto University) Group Leader : Haruyuki INUI (Kyoto University) Group Leader : Nobuhiro TSUJI(Kyoto University)

Strength is important

Ductility is essential

Formability

Earthquake disaster@Kobe 1995

Shock absorption : Strength x Elongation (Ductility)

Essential for safe and secure society.

3

Dislocation mechanism in metals

Ductility increases

by **enhanced** movement and multiplication of dislocations

Strength increases

by **retarded** movement and multiplication of dislocations

solution hardening precipitation hardening

Origin of the trade-off relationship.

Bulk Nano-structured Materials (BNM)

BNM has recent focus due to discovery of unique properties.

Bulk Nano-structured Materials (BNM)

Four times enhancement of strength.

8

Bulk Nano-structured Materials (BNM)

Research Topics

Topic 1. Plaston concept

Topic 2. Realization of *plaston* induced plasticity materials

Topic 3. *Plaston* in brittle materials

Topic 4. Atomic process of plaston

by first principles and atomic simulations

Ikuhara

Topic 5. Novel experimental techniques

to analyze *plaston* processes

The plaston concept

Plaston: Atomic origin of plastic deformation in general.

Atomic process of plaston : Simulation

Plaston process by advanced beam sources

Newly discovered enhanced plasticity in BNM

Material	Plaston mechanism for enhanced plasticity	Maximum elongation in BNM	Discovery year	Ultra fine
Mg alloy	unusual dislocation + deformation twin	0.26	2018	grained metal ↓ Deformation
Cu alloy	deformation twin	0.43	2016	
Austenitic steel	martensitic transformation	1.0	2016	• σ
High Mn steel	deformation twin	0.55	2019	Plaston nucleation @ grain boundary
				16

Achievements: Summary

Intellectual Merit

- Establishment of the new concept of *plaston* through collaboration of fundamental studies.
- ✓ Realization of new plaston induced plasticity materials.

Broader Impacts

- ✓ Development of new computational/experimental tools useful for materials science in general.
- Transfer of ideas from fundamental research to industry.
- ✓ Nurture of **talented researchers**.