Element Strategy Initiative Advisory Council (ESIAC) 2019, December 13 (Friday), 2019 @ Yokohama

Synchrotron Radiation Facility

Masaki Takata

Tohoku University Photon Science Innovation Center

Application of magnetic materials

Insertion devices

Information Technologies

Magnetic refrigerator

HEV, EV cars

Magnetic thin films,

Permanent magnets

Wind power generators

Arthro of Robots

ESICMM embarked innovative upgrade of BL25SU toward nano visualization of magnetism.

To uncover the coercivity mechanism via soft X-ray nano-beam

BL25SU was installed in 1998. Vibration problem has become serious.

We uninstalled the original beamline in Dec. 2013, and built the new BL with the couple of branches.

The matching funds were source of beamline upgrade

ESICMM collaboration with RIKEN and JASRI

Retarding Field Analyzer

Grand-in Aid for Scientific Research on Innovative Area

Photon and Quantum Basic Research Coordinated Development Program

Prof. H. Daimon

ESICMM also ignited new challenges of SX instruments technology.

Development of Scanning Soft X-ray Magnetic Imaging

Y. Kotani et al., J. Synchrotron Rad. 25, 1444 (2018).

Magnetic and Morphologic Contrast imaging has achieved.

Challenge of the fast scan imaging as practicable tool.

10 hours \rightarrow 10 min.

⇒ XMCD mapping using the quick scan has been developed instead of the step scan mode.

60 times faster

Unmasking the interior magnetic domain structure and evolution

Fractured surface imaging allows investigation of realistic magnetic domains.

3D visualization has further been developed.

Gd-Fe-Co thick disk

M. Suzuki et al., APEX 11, 036601 (2018).

SPring-8 has ushered critical magnetic materials strategy!

Thank you for your attention.

Functional imaging

Feasibility of XMCD-CT using hard X-rays

Scanning X-ray magnetic CT setup

SPring-8 BL39XU

Si photodiode (1)

Polarization modulation at 37 Hz with diamond X-ray phase plate On the Fly Scan + Lock-in detection

M. Suzuki et al., Appl. Phys. Express 11, 036601 (2018).

Magnetic domain observation techniques

Methods	Specimen	Magnetic fields	Resolution	Lab./ Facility
Kerr microscopy	Flat surface	~ 25 T	200 - 1,000 nm	Labo.
MFM	Relatively flat surface	< 1 T	10 - 50 nm	Labo.
Lorenz TEM	Transmittable thin film (~100 nm)	< 1 T	~1 nm	Labo.
Spin SEM	Surface (irregular surface)	< 0.1 T	~10 nm	Labo.
S <mark>T</mark> XM, <u>T</u> XM	Transmittable thin film (~100 nm)	Currently, < 0.5 T	10 - 100 nm	SR X-rays
PEEM	Surface	< 0.05 T	20 - 100 nm	SR X-rays
SXM by TEY mode (This work)	Surface (irregular surface)	8 T	50 - 100 nm	SR X-rays

Only this work makes possible to observe the magnetic domain structure in the irregular surface under high magnetic fields.